CERTAIN DISTRIBUTION-FREE TESTS OF REGRESSION*

By R. S. KURUP ‡
University of Kerala, Trivandrum

THE PROBLEM

Suppose we are given n pairs of observations (x_i, y_i) , $i = 1, 2 \cdots n$ from a continuous bivariate distribution and we are required to fit a relation of the form $Y = f(x, \theta)$ where ' θ ' denotes a set of parameters whose values may be found by any method of estimation. To test the significance of regression, the null hypothesis is $H_0: \theta = 0$. Classical workers tested regression by assuming that the errors are normally and independently distributed and this forms the basis of the x^2 -test. In this paper the problem is tackled without any such assumptions.

For this problem, Brown and Mood (1950),¹ (1951)² suggested a statistic,

$$A = \frac{8}{n} \left\{ \left(r_1 - \frac{n}{4} \right)^2 + \left(r_2 - \frac{n}{4} \right)^2 \right\}$$

where r_1 and r_2 are the number of positive ϵ 's below and above the median of the x's, ϵ being the discrepancy between the observed 'y' and the value of 'y' under the null hypothesis. For moderately large 'n', this is distributed as a ' x^2 ' with 2 degrees of freedom. This statistic considers the 4 possible arrangements of signs, as shown below:

			n/2		,			n/2			,
+	+	+	+	•••	+		_	_	_	•••	_
+	+	+	+	• • •	+	+	+	+	+	• • •	+
_	-	_		• • •	_	- .	_		_	•••	_
_	_	_	_	• • •	_	+	+	+	+	• • •	+

^{*} Paper prepared in 1955 under a Government of India Senior Scholarship.

[‡] The author is at present employed in the Bereau of Economics and Statistics, Trivandrum.

Daniels in 19543 suggested:

•

$$B = \frac{2}{\sqrt{n}} \left\{ \left| r_1 - \frac{n}{4} \right| + \left| r_2 - \frac{n}{4} \right| \right\}$$

as a test criterion. This has the asymptotic distribution:

$$P(B \geqslant B_0) = 4 \phi(B_0) (1 - \phi(B_0))$$

where $\phi(B_0)$ is the normal cumulative distribution. It was shown that this is more powerful than the A-test mentioned earlier. Daniels proposed another test, the m-test, based on the 2ⁿ possible arrangements of signs.

2. The Proposed Test-Criteria and Their Distributions

Let $x_1, x_2 \cdots x_n$ denote the ordered x's in ascending order of magnitude; also let ϵ be the difference between the observed 'y' and the value of 'y' under the null hypothesis and ' R_i ' denote the number of positive ϵ 's up to x_i (including ' x_i '). Considering only four possible arrangements of the signs we may formulate the criterion R_n with expectation n/2 and variance n/4. It is obvious that for large n, $4/n(R_n - n/2)$ follows the normal distribution with mean '0' and variance unity under ' H_0 '. For small 'n', the probability of any particular ' R_n ' can be found easily by computation as the probability is $\frac{1}{2}$ for any ϵ to be positive or negative.

Another criterion which can be used for the test is $T = \sum_{i=1}^{n} R_{i}$.

The exact distribution of this criterion has been tabulated up to n = 10 by considering all possible arrangements. As 'T' is found to be symmetrical about its mean n(n+1)/4 the upper half alone is given in Table I.

The significance of T should be tested using the two tails of the distribution.

The distribution of T is symmetrical. The mean value of 'T' is n(n+1)/4 and variance [n(n+1)(2n+1)]/24

$$T' = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{1 - 24}}}$$

Table I $\textit{Ordinates P of the distribution of } T = \sum_{i=1}^{s} R_i$

n	$_{\cdot}T$	P	n	T	P
3	6	•125		22	03125
5	5	125		21	.0390625
	4	125		20	
	3	·250		19	·046875
			•	18	·0546875
4	10	∙0625		17	·0625
	9	,,		16	∙0625
	8 7	·1250		15 14	,,
	6			14	,,
	5	"	8	36	.00390625
			_	35	,,
5	15	·03125		34	
	14	,,		33	.0078125
	13	.0625		32	·011 7 1875
	12	⋅0625		31	
	11	·09375		30 29	·015625 ·01953125
	10 9			29 28	·01933123 ·0234375
	8	**		27 27	.02734375
		,,		26	.03125
6	21	·015625		25	.03515625
	20	,,		24	.0390625
	19			23	·04296875
	18	.03125		22	·046875
	17	.046875		21	.05078125
	16			20	"
	15 14	∙0625		19 18	·0546875
	13	**		10	-0340873
	12	·078125	. 9	45	.001953125
	11	,,	_	44	,,
				43	
7	28	-0078125		42	.00390625
	27	,,		41	·005859375
	26 25	.015625		40 39	·005859375 ·0078125
	25 24			39 38	·0076123
	23	·0234375		37	003703023

TABLE I (Contd.)

n	T	P		n	T	P
	36	·015625			49	.00390625
	35	$\cdot 017578125$			48	0048828125
	34	.01953125	,,,		47	005859375
	33	·0234375			46	.0078125
	32	·025390625			45	.009765625
	31	$\cdot 029296875$			44	·0107421875
	30	$\cdot 033203125$			43	·0126953125
	29	03515625			42	·0146484375
	28	$\cdot 037109375$			41	·0166015625
	27	·041015625			40	·01953125
	26	,,			39	·0214843 7 5
	25	·04296875 .			38	·0234375
	24	·044921875			37	.026367187
	23	,,			36 .	·0283203123
					35	·0302734375
10	55	·0009765625		•	34	·0322265625
	54	,,			33	·0341796875
	53	•			32	·03515625
	52	·001953125			31	.037109375
	51	,,			30	•0380859375
	50	.0029296875			29	. ,,
					28	.0390625

^(,,) Denotes the same value as before.

will therefore tend to have a normal distribution with mean '0' and variance 1 for large 'n'.

3. Another Test Criterion

If
$$z_i = R_i - \frac{i}{2},$$
$$E(z_i) = 0$$

and

$$E(z_i z_j) = \frac{n_i}{4} \quad \text{for } j \leqslant i$$
$$= \frac{n_i}{4} \quad \text{for } j > i.$$

Denoting by z, the matrix of values $z_1, z_2, \dots z_n$ and by Γ the covariance matrix of the z_i 's

$$T_n^2 = z \Gamma^{-1} z'$$

$$= \frac{4}{n} \left[2 \sum_{i=1}^{n-1} (z_i^2 - z_i z_{i+1}) + z_n^2 \right]$$

$$= \frac{4}{n} \sum_{i=1}^{n} \left(\delta_i - \frac{1}{2} \right)^2$$

where δ_i is 1 or 0 with probability $\frac{1}{2}$. Here, it may be noted that R_i (defined earlier) = $\sum_{j=1}^{i} \delta_j$.

From the structure of the criterion $T_n^2 = z\Gamma^{-1}z'$, it can be seen that for large n, it will behave as a x^2 with 'n' degrees of freedom. For small 'n' the exact distribution under H_0 can be tabulated.

4. Power of the Criteria

We may for convenience assume that we are required to test the linear relation $y = \alpha + \beta x$. Under the alternative (β, α) against (β_0, α_0) , $\epsilon_i = y_i - \alpha - \beta x_i$... (1)

has probability ½ for being positive or negative

$$v_{i} = a_{0} - \beta_{0} x_{i} = \epsilon_{i} - (a_{0} - a) - (\beta_{0} - \beta) x_{i}. \tag{2}$$

Let

$$p_i = \text{prob. } \{ \epsilon_i > (\alpha_0 - \alpha) + (\beta_0 - \beta) x_i \}. \tag{3}$$

Following Daniels³ we may consider $p_i = p$ for all 'i'. This is the case if the alternatives are (β_0, a) and all the ϵ 's have the same distribution $f(\epsilon)$. Then

$$p = \int_{a_0 - a}^{a} f(\epsilon) d\epsilon \simeq \frac{1}{2} - (a_0 - a) f(0)$$
 (4)

If as in (3)

$$p=\frac{1}{2}\left(1-\frac{\mu}{\sqrt{n}}\right),\,$$

we have

$$\mu = 2\left(\alpha_0 - \alpha\right) f(0) \sqrt{n} \tag{5}$$

The limiting form of the distribution of R_n under the alternative hypothesis is a normal distribution with parameter.

$$\frac{np - \frac{n}{2}}{\sqrt{npq}} \simeq \mu$$

for large 'n'. Using this, the power of R_n for large 'n' has been computed and given in Table II for various values of ' μ '. For comparison the relevant results from (3) are reproduced.

Table II

Asymptotic power of five tests at .05 level for alternatives $\alpha \neq \alpha_0$, $\beta = \beta_0$ Here $\mu = \sqrt{n} \{1 - 2 \text{ prob. } (\epsilon_i > (\alpha - \alpha_0))\}$

ı	u	m-Test	<i>A</i> .	В	R_n	F-Test
• 1	0	.05	·05	.05	.05	.05
:"	790	.09	•10	•10	•12	•13
1.	316	•16	•20	•20	·26	• 29
1.	666	•25	-30	•30	•39	•45
1.5	958	•33	•40	•41	•50	• 59
2.	226	•42	•50	•51	·61	· 7 1
2.	493	•52	.60	•61	•70	·81
2.	775	.62	•70	·71	•79	.89
3.	104	•73	.80	·81	·87	. 95
3.	557	·85	.90	•91	•95	.99

The values given above show that R_n is more powerful than the other distribution-free tests namely *m*-test, A and B. Also it approaches the *F*-Test (in power) based on the assumption of normality (parameter $\frac{1}{2}\pi\mu^2$ and degrees of freedom 2).

Under the alternative hypothesis discussed above the criterion T has expectation [n(n+1)] P/2 and variance [n(n+1)] pq/2. Hence in terms of μ the parameter for T is

$$r = -\sqrt{\frac{n(n+1)\mu^2}{2(n-\mu^2)}}$$

and T is asymptotically normally distributed. For the criterion T_n^2 the corresponding parameter is r^2 . The power of T and T_n^2 is not evaluated here as they behave like the 't' and x^2 -tests respectively.

REFERENCES

- 1. Mood, A. M.
- 2. Brown, G. W. and Mood, A. M.
- 3. Daniels, H. E.

- Introduction to the Theory of Statistics, McGraw-Hill, New York, 1950.
- "On median tests of linear hypothesis," Proceedings of the Second Berkely Symposium on Mathematical Statistics and Probability, University of California, Berkeley, 1951, pp. 159-66.
- "A distribution-free test for regression parameters," Annals of Math-Statistics, 1954, 25, 499-514.